? 五大經典排序算法動圖演示二-【元標seo】

五大經典排序算法動圖演示二

作者: 杭州網站優化公司 分類: 搜索引擎算法 發布時間: 2018-04-30 16:14 0

6、快速排序(Quick Sort)

快速排序的基本思想:通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。

6.1 算法描述

快速排序使用分治法來把一個串(list)分為兩個子串(sub-lists)。具體算法描述如下:

  • 從數列中挑出一個元素,稱為 “基準”(pivot);
  • 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的后面(相同的數可以到任一邊)。在這個分區退出之后,該基準就處于數列的中間位置。這個稱為分區(partition)操作;
  • 遞歸地(recursive)把小于基準值元素的子數列和大于基準值元素的子數列排序。

6.2 動圖演示

十大經典排序算法動圖演示

6.3 代碼實現

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function quickSort(arr, left, right) {
    var len = arr.length,
        partitionIndex,
        left =typeof left !='number' ? 0 : left,
        right =typeof right !='number' ? len - 1 : right;
 
    if (left < right) {
        partitionIndex = partition(arr, left, right);
        quickSort(arr, left, partitionIndex-1);
        quickSort(arr, partitionIndex+1, right);
    }
    return arr;
}
 
function partition(arr, left ,right) {    // 分區操作
    var pivot = left,                     // 設定基準值(pivot)
        index = pivot + 1;
    for (var i = index; i <= right; i++) {
        if (arr[i] < arr[pivot]) {
            swap(arr, i, index);
            index++;
        }       
    }
    swap(arr, pivot, index - 1);
    return index-1;
}
 
function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

7、堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。

7.1 算法描述

  • 將初始待排序關鍵字序列(R1,R2….Rn)構建成大頂堆,此堆為初始的無序區;
  • 將堆頂元素R[1]與最后一個元素R[n]交換,此時得到新的無序區(R1,R2,……Rn-1)和新的有序區(Rn),且滿足R[1,2…n-1]<=R[n];
  • 由于交換后新的堆頂R[1]可能違反堆的性質,因此需要對當前無序區(R1,R2,……Rn-1)調整為新堆,然后再次將R[1]與無序區最后一個元素交換,得到新的無序區(R1,R2….Rn-2)和新的有序區(Rn-1,Rn)。不斷重復此過程直到有序區的元素個數為n-1,則整個排序過程完成。

7.2 動圖演示

十大經典排序算法動圖演示

7.3 代碼實現

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
var len;   // 因為聲明的多個函數都需要數據長度,所以把len設置成為全局變量
 
function buildMaxHeap(arr) {  // 建立大頂堆
    len = arr.length;
    for (var i = Math.floor(len/2); i >= 0; i--) {
        heapify(arr, i);
    }
}
 
function heapify(arr, i) {    // 堆調整
    var left = 2 * i + 1,
        right = 2 * i + 2,
        largest = i;
 
    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }
 
    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }
 
    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, largest);
    }
}
 
function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
 
function heapSort(arr) {
    buildMaxHeap(arr);
 
    for (var i = arr.length - 1; i > 0; i--) {
        swap(arr, 0, i);
        len--;
        heapify(arr, 0);
    }
    return arr;
}

8、計數排序(Counting Sort)

計數排序不是基于比較的排序算法,其核心在于將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。 作為一種線性時間復雜度的排序,計數排序要求輸入的數據必須是有確定范圍的整數。

8.1 算法描述

  • 找出待排序的數組中最大和最小的元素;
  • 統計數組中每個值為i的元素出現的次數,存入數組C的第i項;
  • 對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);
  • 反向填充目標數組:將每個元素i放在新數組的第C(i)項,每放一個元素就將C(i)減去1。

8.2 動圖演示

十大經典排序算法動圖演示

8.3 代碼實現

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function countingSort(arr, maxValue) {
    var bucket =new Array(maxValue + 1),
        sortedIndex = 0;
        arrLen = arr.length,
        bucketLen = maxValue + 1;
 
    for (var i = 0; i < arrLen; i++) {
        if (!bucket[arr[i]]) {
            bucket[arr[i]] = 0;
        }
        bucket[arr[i]]++;
    }
 
    for (var j = 0; j < bucketLen; j++) {
        while(bucket[j] > 0) {
            arr[sortedIndex++] = j;
            bucket[j]--;
        }
    }
 
    return arr;
}

8.4 算法分析

計數排序是一個穩定的排序算法。當輸入的元素是 n 個 0到 k 之間的整數時,時間復雜度是O(n+k),空間復雜度也是O(n+k),其排序速度快于任何比較排序算法。當k不是很大并且序列比較集中時,計數排序是一個很有效的排序算法。

9、桶排序(Bucket Sort)

桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在于這個映射函數的確定。桶排序 (Bucket sort)的工作的原理:假設輸入數據服從均勻分布,將數據分到有限數量的桶里,每個桶再分別排序(有可能再使用別的排序算法或是以遞歸方式繼續使用桶排序進行排)。

9.1 算法描述

  • 設置一個定量的數組當作空桶;
  • 遍歷輸入數據,并且把數據一個一個放到對應的桶里去;
  • 對每個不是空的桶進行排序;
  • 從不是空的桶里把排好序的數據拼接起來。 

9.2 圖片演示

十大經典排序算法動圖演示

9.3 代碼實現

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function bucketSort(arr, bucketSize) {
    if (arr.length === 0) {
      return arr;
    }
 
    var i;
    var minValue = arr[0];
    var maxValue = arr[0];
    for (i = 1; i < arr.length; i++) {
      if (arr[i] < minValue) {
          minValue = arr[i];               // 輸入數據的最小值
      }else if (arr[i] > maxValue) {
          maxValue = arr[i];               // 輸入數據的最大值
      }
    }
 
    // 桶的初始化
    var DEFAULT_BUCKET_SIZE = 5;           // 設置桶的默認數量為5
    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;  
    var buckets =new Array(bucketCount);
    for (i = 0; i < buckets.length; i++) {
        buckets[i] = [];
    }
 
    // 利用映射函數將數據分配到各個桶中
    for (i = 0; i < arr.length; i++) {
        buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
    }
 
    arr.length = 0;
    for (i = 0; i < buckets.length; i++) {
        insertionSort(buckets[i]);                     // 對每個桶進行排序,這里使用了插入排序
        for (var j = 0; j < buckets[i].length; j++) {
            arr.push(buckets[i][j]);                     
        }
    }
 
    return arr;
}

9.4 算法分析

桶排序最好情況下使用線性時間O(n),桶排序的時間復雜度,取決與對各個桶之間數據進行排序的時間復雜度,因為其它部分的時間復雜度都為O(n)。很顯然,桶劃分的越小,各個桶之間的數據越少,排序所用的時間也會越少。但相應的空間消耗就會增大。 

10、基數排序(Radix Sort)

基數排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次類推,直到最高位。有時候有些屬性是有優先級順序的,先按低優先級排序,再按高優先級排序。最后的次序就是高優先級高的在前,高優先級相同的低優先級高的在前。

10.1 算法描述

  • 取得數組中的最大數,并取得位數;
  • arr為原始數組,從最低位開始取每個位組成radix數組;
  • 對radix進行計數排序(利用計數排序適用于小范圍數的特點);

10.2 動圖演示

十大經典排序算法動圖演示

10.3 代碼實現

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value =null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) !=null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}

10.4 算法分析

基數排序基于分別排序,分別收集,所以是穩定的。但基數排序的性能比桶排序要略差,每一次關鍵字的桶分配都需要O(n)的時間復雜度,而且分配之后得到新的關鍵字序列又需要O(n)的時間復雜度。假如待排數據可以分為d個關鍵字,則基數排序的時間復雜度將是O(d*2n) ,當然d要遠遠小于n,因此基本上還是線性級別的。

基數排序的空間復雜度為O(n+k),其中k為桶的數量。一般來說n>>k,因此額外空間需要大概n個左右。

轉載請注明出處:http://www./seojishu/suanfa/866.html